FONCTIONS EXPONENTIELLES DE BASE a et LOGARITHME DECIMAL¹

1. FONCTIONS EXPONENTIELLES DE BASE a

Définition.

On appelle fonction exponentielle de base a toute fonction définie sur R par :

 $f(x) = a^x$ avec a réel strictement positif.

Propriétés. Soit a réel un strictement positif.

Pour tout réel x, $a^x > 0$

Pour tous réel x, y :

$a^0 = 1$	$a^1 = a$	$a^x \times a^y = a^{x+y}$	$a^{-x} = \frac{1}{a^x}$	
$\frac{a^x}{a^y} = a^{x-y}$	$(ab)^x = a^x b^x$	$\left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$	$(a^x)^y = a^{xy}$	

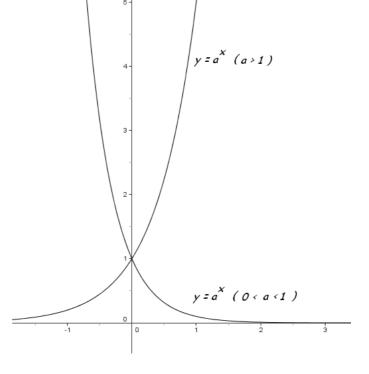
Sens de variation de la fonction $x \mapsto a^x$

Soit a réel un strictement positif.

- lorsque a > 1, la fonction $x \mapsto a^x$ est strictement croissante sur R
- lorsque 0 < a < 1, la fonction $x \mapsto a^x$ est strictement décroissante sur R

Conséquences:

- lorsque a > 1, $a^x < a^y \Leftrightarrow x < y$
- lorsque 0 < a < 1, $a^x < a^y \Leftrightarrow x > y$
- lorsque $a \neq 1$, $a^x = a^y \Leftrightarrow x = y$



106 7 0 0 10 01 00 04 06 00 00 60	107 1 0 107 00 05 07
p.136: 7, 8, 9, 10, 21, 23, 24, 26, 28, 29, 60,	p.127 : 1, 2, p.137 : 22, 25, 27
p.130 . 7, 6, 3, 16, 21, 23, 2 ., 26, 26, 23, 66,	p.127 . 1, 2, p.137 . 22, 23, 27
(1 (5	
61, 65	

FONCTIONS EXPONENTIELLES DE BASE a et LOGARITHME DECIMAL²

2. FONCTION LOGARITHME DECIMAL.

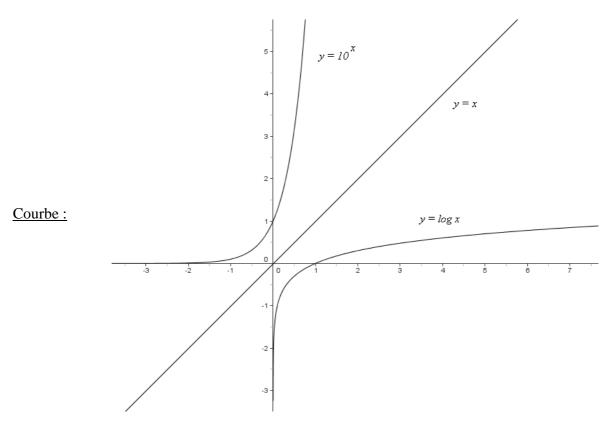
Définition.

On appelle fonction logarithme décimal la fonction définie sur $]0;+\infty[$ par : $\log : x \mapsto \log x$.

Cette fonction est la réciproque de la fonction : $x \mapsto 10^x$.

Les courbes de ces deux fonctions sont donc symétriques par rapport à la droite d'équation y=x

Pour tout réel x > 0: $y = \log x \iff x = 10^y$



Propriétés de la fonction logarithme décimal.

- $\log 1 = 0$; $\log 10 = 1$
- Pour tout nombre réel a, $\log(10^a) = a$

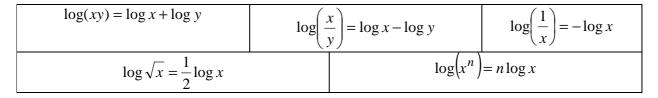
La fonction logarithme décimal étant strictement croissante sur $]0;+\infty[$,

- pour tous nombres réels a et b strictement positifs : $\log a = \log b \Leftrightarrow a = b$
- pour tous nombres réels a et b strictement positifs : $a \le b \iff \log a \le \log b$
- pour tout nombre réel x tel que 0 < x < 1, $\log x < 0$
- pour tout nombre réel x tel que x > 1, $\log x > 0$

FONCTIONS EXPONENTIELLES DE BASE a et LOGARITHME DECIMAL³

Propriétés algébriques.

Pour tous réels x et y strictement positifs, pour tout réel n:



Equations et inéquations du type $a^x = b$, $a^x > b$, $a^x < b$

On résout de la façon suivante :

$$a^x = b \Leftrightarrow \log(a^x) = \log b \Leftrightarrow x \log a = \log b \Leftrightarrow x = \frac{\log b}{\log a}$$

Lorsque a > 1

$$a^x < b \Leftrightarrow \log(a^x) < \log b \Leftrightarrow x \log a < \log b \Leftrightarrow x < \frac{\log b}{\log a}$$
 (car: $\log a > 0$)

Lorsque 0 < a < 1

$$a^x < b \Leftrightarrow \log(a^x) < \log b \Leftrightarrow x \log a < \log b \Leftrightarrow x > \frac{\log b}{\log a}$$
 (car: $\log a < 0$)

On utilise en particulier ces équations pour déterminer à partir de quel rang les termes d'une suite géométrique deviennent inférieurs (ou supérieurs) à un certain seuil

Problèmes

p.138: 42, 70, 71, 79, 82, 89	
DM: p.149: 90, 91	

QCM: p.135, p.137: 30, 45,	A retenir : p.134	Pour réussir : p.147
49, 67, 69, 77, 87		