EQUATIONS DIFFERENTIELLES

Equation différentielle y' + ay = 0.

Les solutions de l'équation différentielle y' + ay = 0, où a est un réel fixé, sont les fonctions définies sur \mathbf{R} par $f(x) = Ce^{-ax}$ où C désigne une constant réelle.

Soit x_0 et y_0 deux réels ; il existe une fonction unique f solution de l'équation différentielle y' + ay = 0 et vérifiant $f(x_0) = y_0$.

p.251 : 3 à 7	p.241 ER1; p.251:1, 2
p.251:8,9	

Equations différentielles du type y' + a y = b.

Les solutions de l'équation différentielle y' + ay = b (a réel non nul et b réel) sont les fonctions définies $\sup \mathbf{R} \operatorname{par} f(x) = Ce^{-ax} + \frac{b}{a}$ où C désigne une constant réelle.

La fonction constante $x \mapsto \frac{b}{a}$ est une solution de l'équation différentielle y' + ay = b

Soit deux réels x_0 et y_0 , il existe une fonction unique f solution de l'équation différentielle y' + ay = b (a réel non nul et b réel) vérifiant : $f(x_0) = y_0$.

p.252:13	p.242 ER2
p.252: 14, 15, 16	p.243 ER3; p.252: 12

Equations différentielles du type $y'' + \omega^2 y = 0$

Les solutions de l'équation différentielle $y''+\omega^2y=0$ sont les fonctions définies sur \mathbf{R} par $f(t)=k_1\cos\omega t+k_2\sin\omega t$, k_1 et k_2 étant des constantes réelles quelconques et ω un nombre positif non nul appelé pulsation

Il existe une fonction unique f définie sur \mathbf{R} solution de l'équation différentielle $y''+\omega^2y=0$ vérifiant deux conditions initiales données.

p.253 : 24 à 27	p.245 ER4
p.253 : 28 à 31	p.253:22,23

Problèmes

p.253 : 17 à 21 ; p.254 : 32 à 36, p.259 : 48, 54 ;	p.212 : 25, 38, p.248 : 47, p.261 : 57 ; p.263 : 64
p.264:70	DM: 59, 61, 65 p.262