Limite d'une fonction

1. Limite finie en l'infini.

Soit f une fonction définie dans un intervalle] $a : +\infty$ [, a étant un réel.

Soit L un réel, la fonction f tend vers L quand x tend vers $+\infty$ si et seulement si |f(x)-L| tend vers 0 (c'est-à-dire la distance entre f(x) et L tend vers 0) **pour** x **assez grand.**

On note
$$\lim_{x \to +\infty} f(x) = L$$
 ou $\lim_{+\infty} f = L$.

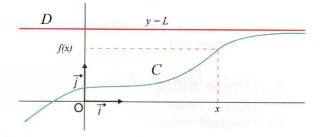
Soit f une fonction définie dans un intervalle] $-\infty$; a [, a étant un réel.

Soit L un réel, la fonction f tend vers L quand x tend vers $-\infty$ si et seulement si |f(x)-L| tend vers 0

(c'est-à-dire la distance entre f(x) et L tend vers 0) **pour** x **assez grand négatif.**

On note
$$\lim_{x \to -\infty} f(x) = L$$
 ou $\lim_{x \to -\infty} f(x) = L$.

Asymptote horizontale. Lorsque $\lim_{x \to +\infty} f(x) = L$, la courbe représentative de la fonction f admet pour asymptote la droite d'équation y = L en $+\infty$. (énoncé analogue en $-\infty$)



Exemple:

Soit la fonction f définie sur]0; $+\infty[$ par $f(x) = \frac{3}{x} + 2$. Déterminer $\lim_{x \to +\infty} f(x)$ et en déduire l'existence d'une asymptote à la courbe de f.

2. Limite infinie d'une fonction en *a* (*a* réel).

Soit f une fonction définie sur un intervalle I tel que I = [a; b] ou I = [b; a[

La fonction f tend vers $+\infty$ quand x tend vers a si et seulement si f(x) devient de plus en plus grand lorsque x se rapproche de a.

On note
$$\lim_{x \to a} f(x) = +\infty$$
 ou $\lim_{x \to a} f = +\infty$

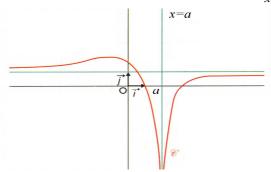
La fonction f tend vers $-\infty$ quand x tend vers a si et seulement si f(x) devient de plus en plus grand négatif **lorsque** x se rapproche de a.

On note
$$\lim_{x \to a} f(x) = -\infty$$
 ou $\lim_{x \to a} f(x) = -\infty$.

Exemple:

Soit la fonction f définie sur] 0; $+\infty$ [par $f(x) = \frac{1}{x}$. Que constate-t-on lorsque x est proche de 0? A partir de quelle valeur de x a-t-on $f(x) \ge 1000$? Déterminer $\lim_{x \to 0} f(x)$.

Asymptote verticale. Lorsque $\lim_{x\to a} f(x) = +\infty$, la courbe représentative de la fonction f admet pour asymptote la droite d'équation x = a. (idem lorsque $\lim_{x\to a} f(x) = -\infty$)



<u>Technique</u> : on décompose en $\lim_{\substack{x \to a \\ y < a}} f(x)$ et $\lim_{\substack{x \to a \\ y > a}} f(x)$ après avoir étudié le signe du dénominateur.

Exemple: Calculer $\lim_{x \to -1} \frac{2x-1}{x^2-1}$ puis $\lim_{x \to 1} \frac{2x-1}{x^2-1}$ et en déduire l'existence d'asymptotes à la courbe de f.

p.62 : TP1, p.71 : 12

3. Limite infinie en l'infini.

Soit f une fonction définie dans un intervalle] $a : +\infty$ [, a étant un réel.

La fonction f tend vers $+\infty$ quand x tend vers $+\infty$ si et seulement si f(x) devient de plus en plus grand pour x assez grand.

On note
$$\lim_{x \to +\infty} f(x) = +\infty$$
 ou $\lim_{x \to +\infty} f(x) = +\infty$.

Exemple:

Soit la fonction f définie sur]0; $+\infty[$ par $f(x)=x^2+2$. Que constate-t-on lorsque x devient grand? A partir de quelle valeur de x a-t-on $f(x) \ge 1000$? Déterminer $\lim_{x \to +\infty} f(x)$.

La fonction f tend vers $-\infty$ quand x tend vers $+\infty$ si et seulement si pour f(x) devient de plus en plus grand négatif **pour** x **assez grand.**

On note
$$\lim_{x \to +\infty} f(x) = -\infty$$
 ou $\lim_{+\infty} f = -\infty$.

Soit f une fonction définie dans un intervalle $]-\infty$; a [, a étant un réel.

La fonction f tend vers $+\infty$ quand x tend vers $-\infty$ si et seulement si f(x) devient de plus en plus grand **pour** x assez grand négatif.

On note
$$\lim_{x \to -\infty} f(x) = +\infty$$
 ou $\lim_{x \to -\infty} f(x) = +\infty$.

La fonction f tend vers $-\infty$ quand x tend vers $-\infty$ si et seulement f(x) devient de plus en plus grand négatif **pour** x assez grand négatif.

On note
$$\lim_{x \to -\infty} f(x) = -\infty$$
 ou $\lim_{-\infty} f(x) = -\infty$.

3. Limites de référence Soit *n* un entier naturel **non nul**

$\lim_{x \to +\infty} x^n = +\infty$	$\lim_{x \to +\infty} \sqrt{x} = +\infty$
Lorsque <i>n</i> est pair : $\lim_{x \to -\infty} x^n = +\infty$	lorsque <i>n</i> est impair : $\lim_{x \to -\infty} x^n = -\infty$
$\lim_{x \to +\infty} \frac{1}{x^n} = 0$	$\lim_{x \to -\infty} \frac{1}{x^n} = 0$
Lorsque n est pair : $\lim_{x \to 0} \frac{1}{x^n} = +\infty$	lorsque n est impair : $\lim_{\substack{x \to 0 \ x < 0}} \frac{1}{x^n} = -\infty$ et $\lim_{\substack{x \to 0 \ x > 0}} \frac{1}{x^n} = +\infty$

Lorsque f est une fonction polynôme, rationnelle, sinus, cosinus ou racine carrée définie sur un intervalle I et a un réel appartenant à I, on a $\lim_{x \to a} f(x) = f(a)$

4. Opérations sur les limites.

Les résultats concernant la limite d'une somme, la limite d'un produit ou la limite d'un quotient de fonctions lorsque x tend vers un réel a sont intuitivement évidents. De même que « l'inverse d'un infiniment grand est un infiniment petit » et « l'inverse d'un infiniment petit est un infiniment grand ».

Il existe cependant quatre cas de formes indéterminées qui nécessiteront une étude particulière chaque fois qu'ils se présenteront: $\infty - \infty$; $0 \times \infty$; $\frac{\infty}{2}$; $\frac{0}{2}$

Limite d'une fonction polynôme ou rationnelle en l'infini.

La technique consiste à mettre en facteur le terme de plus haut degré.

Exercice

Déterminer
$$\lim_{x \to +\infty} \frac{3x^2 + 5x + 2}{2x - 3}$$

Limite d'une fonction composée.

Une fonction composée est une fonction de la forme f(u(x))

Lorsque
$$\lim_{x \to a} u(x) = b$$
 et $\lim_{u \to b} f(u) = c$, alors $\lim_{x \to a} f(u(x)) = c$.

Exercice

Déterminer les limites suivantes:

a)
$$\lim_{x \to +\infty} \sqrt{x^2 + 3}$$

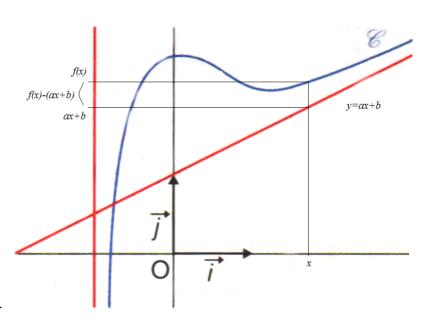
b)
$$\lim_{x \to +\infty} \cos\left(\frac{1}{x}\right)$$

b)
$$\lim_{x \to +\infty} \cos\left(\frac{1}{x}\right)$$
 c) $\lim_{x \to +\infty} (x^2 - x + 5)^5$

TP : Asymptote oblique.

Lorsque $\lim_{x \to +\infty} f(x) - (ax + b) = 0$, la

courbe représentative de la fonction f admet pour asymptote la droite d'équation y = ax + b en $+\infty$ (énoncé analogue en $-\infty$)



Position courbe/asymptote horizontale ou oblique.

On étudie le signe de f(x)-(ax+b)Si sur un intervalle I f(x)-(ax+b)>0, la courbe est au-dessus de l'asymptote sur I. Si sur un intervalle I f(x)-(ax+b)<0, la courbe est au-dessous de l'asymptote

Exercice:

sur I.

Soit f la fonction définie sur $]-2;+\infty[$ par : $f(x) = \frac{2x^2 + 5x - 2}{x + 2}$

Déterminer a, b et c réels tels que $f(x) = ax + b + \frac{c}{x+2}$

En déduire l'existence d'une asymptote oblique à la courbe représentative de f et étudier les positions relatives de la courbe et de l'asymptote.

p.73:30,31 p.72:28	
--------------------	--

Exercices et problèmes.

p.70 :8; p.73 : 32; p.74 : 35, 36; p.82 : 63, 64, 65	p.72 : 24 ; p.74 : 34 ; p.79 : 56 ; p.81 : 62
	DM: p.75: 41; p.76: 46